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Abstract: 
          The Niger Delta Region of Nigeria is presently inundated with non-standard refined diesel fuel oils, 

available in major towns and communities. To investigate the impact of burning these fuels, where no 
scientific evidence of their impacts is available, an experimental study was conducted to examine the effects 
of the non-standard refined diesel on engine performance and emission characteristics in comparison with 
standard refined diesel. The experiments were performed in a naturally aspirated, air-cooled, single-cylinder 
Cussons Engine Testbed, P8252, with a 3.5kW Lombardini engine. In this study, the engine was run at a 
constant speed of 2500 rpm with varying loads to replicate the typical usage of non-standard refined diesel 
fuels in generator engines in the Niger Delta Region of Nigeria. The exhaust emissions were analysed using 
a Testo 350 exhaust gas analyzer, and cylinder pressure was determined using a piezoelectric transducer. 
An Agilent Cary 630 FTIR spectrometer with an absorbance range of 4000 cm-1 to 650 cm-1 was used to 
identify functional groups within the fuel samples and the band equivalent to various radiations. Three non-
standard refined diesel fuel oil samples obtained from the creeks of the Niger Delta Region of Nigeria, were 
tested along with a fourth sample of standard diesel obtained from a government retail outlet in Nigeria 
which was designated as the control sample. Results from the FTIR analysis indicated the presence of 
aromatic stretch around 1600 cm-1 for the non-standard refined fuel samples and the performance and 
emission analysis revealed low levels of brake thermal efficiency (BTE) with high levels of NOx, CO, and 
CO2 emissions for some of the locally refined samples. 

Keywords — Compression ignition engine, Non-standard diesel, NOx emissions, Carbon monoxide, Environment, 
Niger Delta Region 

----------------------------------------************************----------------------------------

I.     INTRODUCTION 
Diesel engines offer efficient combustion 

technology [EL-Seesy et al. 2019] and therefore, 
they are the main source of power in industries, ships, 
and small power generation plants [Sen, 2019], 
[Emiroğlu,� 2019],� [Tadros� et� al.� 2019].�The� diesel�
engine is also known for its high output torque and 

low consumption of fuel compared to the gasoline 
engine [Yu et al. 2020]. However, the emissions 
from the diesel engine have a harmful effect on the 
environment and humans [Santhosh et al. 2020], 
[Raman et al. 2019], [Mejia et al. 2020]. Based on a 
review from the World Health Organization (WHO), 
diesel engine exhaust emissions are classified as a 
carcinogenic substance [IARC, 2012].  
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Exhaust emissions from diesel engines have 
become a source of worry for many countries [Sadeq 
et al. 2019]. High levels of tailpipe emissions have 
led to stringent emission regulations especially for 
conventional diesel combustion engines [Lujan et al. 
2019], [Elwardany et al. 2020]. Diesel engines are 
responsible for high particulate matter (PM) and 
nitrogen oxide (NOx) levels in the environment 
[Benajes et al. 2020], [Sundaram et al. 2020]. The 
formation of NOX in diesel engines is a function of 
the residence time, oxygen concentration, and 
combustion temperatures [Patil and Thipse, 2015]. 

Engines are designed and manufactured to operate 
on specified fuel [Ale, 2003], and the life of an 
engine is largely dependent on the quality of the fuel 
being used [Verma et al. 2018]. Refined diesel fuel 
oils, before being supplied to the market, are 
required to meet a set of regulatory requirements 
[Vempatapu and Kanaujia, 2017]. Sub-standard 
diesel fuel oil will not only affect engine 
performance, but it also increases the noxious 
emissions as well as greenhouse gases [Wang et al. 
2020], and causes drops in engine pressure, 
difficulties in starting, and irreparable damage to 
engines [Cunha et al. 2016]. Also, [Bhowmik et al. 
2019] reported that low quality diesel fuel oil 
reduces brake thermal efficiency (BTE) while it 
increases brake specific energy consumption 
(BSEC), carbon monoxide, and unburned 
hydrocarbon (UHC). The constituents in diesel 
exhaust emissions vary considerably depending on 
the fuel, lubricating oil, engine type, and operating 
conditions [Zielinska et al. 2004], [Nelson et al. 
2008]. However, [Senthikumar et al. 2012] reported 
that emission reduction and performance 
enhancement in diesel engines could be achieved by 
the addition of fuel additives, engine modification, 
and exhaust gas post-treatment.  Fuel modification 
could be achieved by increasing the percentage of 
oxygen in the fuel by the use of additives that are 
cost-effective, eco-friendly, and readily available 
[Kumar et al. 2020]. Several studies have been 
carried out on exhaust emission analysis of diesel 
engines using diesel fuel oil refined to meet 
standards and then blended with other fuels like 

kerosene, white spirit, tyre oil, nanoparticles, waste 
paint, and ethanol as presented in Table 1. 

The quality assessment of diesel fuel oil is very 
important but comes at a very high cost while using 
standard methods [Nespeca et al. 2018]. Studies have 
shown that no technically straightforward solution 
has been developed in the petroleum industry to 
detect and identify compounds in substandard fuels 
[Adesina et al. 2020]. Fourier Transform Infrared 
Spectroscopy Infrared (FTIR) is a reliable and non-
destructive method that provides a quick and 
straightforward analysis of a sample [Barra et al. 
2019]. It determines fuel adulteration by measuring 
the absorbance bands of certain components in the 
fuel [Gong et al. 2016]. Spectra obtained from FTIR 
allow for functional group identification [Edney et al. 
2020]. FTIR was used for the determination of 
biodiesel adulteration with raw vegetable oil [Soares 
et al. 2011], whilst [Barra et al. 2019] highlighted the 
dissimilarities between two diesel classes. The rapid 
and simultaneous prediction of eight quality 
parameters through FTIR analysis was highlighted 
by [Nespeca et al. 2018]. 

Nonstandard refining of crude oil is described as 
the method of refining petroleum products like 
gasoline, diesel, and kerosene without expertise or 
technology [Bebeteidoh et al. 2020]. These products 
are very common in the Niger Delta Region of 
Nigeria [Bebeteidoh et al. 2020]. In [Attah, 2012] the 
author described non-standard refineries as very 
inefficient, they produce low-grade diesel fuel oil 
and as much as 80% of the heavy end of the crude oil 
cannot be refined and is dumped into the 
environment. In [Nrior et al. 2018] it was reported 
that the non-standard refined products contain a lot 
of impurities and unsaturated hydrocarbons, which 
cause knocking in vehicles and generator engines, 
and have caused fires in residential houses. In [Patil 
and Thipse, 2015] the authors reported that non-
standard refined diesel fuel contained adulterants, a 
higher than standard concentration of volatile 
organic compounds, and also had very low 
flashpoints.  
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Non-standard refined diesel fuel oil was used in 
this study. The diesel fuels were locally refined in the 
creeks of the Niger Delta Region of Nigeria using 
crude techniques [Bebeteidoh et al. 2020]. To 
produce non-standard refined diesel fuel oil, the 
crude oil was heated in 220 litre metal drums welded 
together to serve as pots [Umukoro, 2018]. The 
heated crude oil evaporates and goes through two 

pipes attached to the drums and placed inside a 
wooden water bath with the refined product 
emerging at the end of the pipe [Evbuomwan and 
Alete, 2020].  These refined products are classed as 
diesel fuel oil. A huge volume of these products has 
found its way into the Nigerian market, where 
unsuspecting customers buy them for their daily use 
in diesel-run small craft, generators, and vehicles. 

TABLE 1: Literature review on diesel fuel blended with other fuels 

Reference Fuel Blends Findings 

[Kalligeros et 
al. 2005] 

Diesel / Domestic 
heating oil/white spirit 

Increased nitrogen oxide (NOx), unburned hydrocarbon (HC), 
particulate matter (PM), a slight decrease in volumetric fuel 
consumption 

[Czechlowski, 
2020] 

Diesel Fuel Oil Increase in engine load results in a significant reduction in a 
significant reduction in specific NOx emissions 

[Yang et al. 
2017] 

Diesel /kerosene blend Fuel with a higher percentage of kerosene gives maximum power 
output and lower carbon monoxide emission 

[Patil and 
Thipse, 2015] 

Diethyl 
ether/kerosene/diesel 
blend 

Low brake thermal efficiency, high brake specific fuel consumption, 
high smoke at full load, low smoke at part load, low NO, almost 
similar CO, high HC, and low HC at part load 

[Bodisco et al. 
2019] 

Diesel/tyre oil No significant difference in NOx emission. On-road NOx emission 
significantly exceeded set regulations and significant variability in 
on-road emission. 

[Bhowmik et 
al. 2017] 

Diesel/kerosene/ethanol The addition of ethanol to the diesel/kerosene blend substantially 
improved the brake thermal efficiency (BTE), brake specific energy 
consumption (BSEC), oxides of nitrogen (NOx), total hydrocarbon 
(THC), carbon monoxide (CO) emissions of the engine 

[Wani and 
Charoo, 2013] 

Diesel/kerosene Reduction in the brake specific fuel consumption and opacity with 
increased kerosene substitution in diesel 

[Lee et al. 
2013] 

Diesel/waste engine 
oil/waste paint 

Substantial increase in THC, NOx, CO, PM, and CO2. Also, high 
levels of VOCs (volatile organic compounds), benzene, toluene, 
ethylbenzene, and xylenes were recorded. 

[Kadhim, 
2011] 

Diesel/kerosene Reduced brake specific fuel consumption (BSFC). Increase in exhaust 
gas temperature, brake thermal efficiency (BTE), carbon dioxide 
(CO2), NOX 

[Kumar et al. 
2020] 

Diesel/TiO2 nanoparticles By adding 50 and 100 ppm of TiO2 nanoparticles to diesel there was 
a significant reduction in CO, HC, NOx, and smoke emissions 

[Ithnin et al. 
2018] 

Water-in-Diesel 
emulsion 

The result showed that emulsion fuel without surfactant does give 
significant improvement to the engine. There was also an increase in 
the BSFC compared to diesel fuel. Reduction in particulate matter 
(PM) and nitrogen oxide (NOx) 
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The purpose of this study was to investigate the 
impact of the usage of non-standard refined diesel 
fuel oil on engines and the environment. Though 
cheap and readily available in the region, there is no 
scientific evidence of their impact available. The 
emission characteristics in terms of NOx, CO, and 
CO2, of the non-standard refined diesel fuel oil from 
three different camps in the creeks of the Niger Delta 
Region of Nigeria, and the brake specific fuel 
consumption (BSFC) and brake thermal efficiency 
(BTE) were determined. FTIR technique was used to 
determine the chemical bonds present in the test 
fuels.    

The rest of the paper is outlined as follows. Section 
II introduces the materials used and methodology. In 
Section III, the results and discussions are presented, 
while the effect of non-standard refined diesel fuel 
on the environment is presented in Section IV. 
Finally, the concluding remarks are given in Section 
V. 

II. MATERIALS AND METHODS

A. Experimental Fuels and their Properties 
The locally refined samples designated as A, B, 

and C were obtained from three different local 
refineries in the Niger Delta region of Nigeria. For 
comparison, a fourth sample, designated as D, is the 
control sample obtained from a government retail 
outlet in Port Harcourt, Rivers State, Nigeria. The 
physicochemical properties of the test diesel fuel oils 
are presented in Table 2 as adapted from [Bebeteidoh 
et al. 2020].  

TABLE 2: Physicochemical properties of test fuels 
[Bebeteidoh et al. 2020] 

Samples A, B, and C are locally refined diesel fuel samples 
D fuel obtained from a government retail outlet in Nigeria 

B. Fourier Transform Infrared Analysis 

The FTIR analysis was carried out to analyse the 
chemical bonds present in the test fuels. An Agilent 
Cary 630 FTIR spectrometer with an absorbance 
range of 4000 cm-1 to 650 cm-1 was used for the 
analysis to identify functional groups and the bands 
equivalent to various vibrations. Before measuring 
the spectral intensity, the sample holder was cleaned 
with acetone, and the CARY 630 FTIR instrument 
was connected to a computer with the software 
installed for data processing. Using a pipette, a 
sample was added to the sample holder and the 
spectra were captured. The infrared vibrational 
groups of the diesel fuel samples are shown in Table 
3. 

 
TABLE 3: Infrared Vibrational Groups of Diesel Samples

[Nespeca et al. 2018]. 

Attribution Wavenumber (cm-1)

CH3 asymmetrical stretch 2953 

CH3 symmetric stretch 2870 

CH3 angular deformation 1379 

CH2 asymmetrical stretch 2922 

CH2 symmetrical stretch 2853 

CH2 angular deformation 1464 

C=O carbonyl stretch 1750-1735 

C-O stretch (aliphatic ester) 1300-1000 

C=O stretch (aromatics) 1600 and 1475 

=C-H stretch (aromatic) 900-690 

C. Experimental Setup and Procedure 

The experiment was conducted with a single-
cylinder Cussons Engine Testbed P8252 with a 3.5 
kW (4.8 Hp) Lombardini engine as illustrated in Fig. 
1. The engine is a naturally aspirated fuel injected
four-stroke compression ignition engine (CIE). The 
engine drives a 3-phase alternator via a toothed 
pulley and a toothed belt, has a 69mm bore cylinder, 
a 60mm stroke, and a maximum output of 3.5 kW 

Property Units A B C D 

Density kgm-3 850.7 854.5 854.4 862.8 
Kinematic 
viscosity 

mm2s-1 2.946 3.587 3.689 3.20 

Water 
Content 

mg/kg 77 87 214 78 

Cetane Index 46.6 45.8 45.7 45.9 
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(4.8hp) at 3500 rpm. Specifications of the engine are 
listed in Table 4. This type of engine is most widely 
used for fishing boats and in the processing of farm 
produce around the coastal region of Nigeria. 

To ensure that the engine was running in a steady-
state condition during the tests, it was started and 
allowed to run under a no-load condition for 5-10 
minutes. Tests were conducted at four different 
engine loads (0.12kW, 0.43kW, 0.95kW, and 
1.71kW) and the rated speed of 2500rpm. The speed 
was held constant to mimic the operational profile of 
a constant speed standby generator and thereby 
determine the performance of the fuel in these 
generators. To ensure that the fuel system of the test 
engine was not contaminated by other fuels, a 
different external fuel tank, and fuel filter were used 
for each test case. At the end of each experiment, the 
fuel line was purged with clean diesel fuel, and the 
engine allowed to run for an ample time to consume 
any residual fuel from the previous experiment. This 
was to ensure that there was no contamination in the 
process of fuel replacement. The tests were 
conducted three times for each fuel sample. The 
repeatability analysis was based on the technical 
standard ISO/IEC 17025:2017 [Trishch et al. 2019], 
[LAI, 2019]. 

TABLE 4: Specification of the Test Engine 

Manufacturer Model P8252

Engine type 4-stroke

Number of cylinders (N) 1 

Bore (mm) 69 

Stroke (mm) 60 

Swept volume (cm3) 224 

Compression ratio 21.1 

RPM 3600 

Power (kW) 3.5 

Fuel consumption (g/kW.hr) 267 

A Testo 350 exhaust gas analyzer as illustrated in 

Fig. 2, was utilised to determine the concentrations 
of NOx, CO, and CO2 in the exhaust emissions. The 
Testo 350 analyzer is comprised of the sensor system 
and the electronics that are required for emission 
measurement. The specification of the Testo 350 gas 
analyzer is presented in Table 5. 

A piezoelectric transducer (6052 Kistler high-
temperature pressure sensor) was installed in the 
engine cylinder head to measure the in-cylinder 
pressure, and its output signal fed to a Type 5018A 
Kistler single channel charge amplifier. The signal 
from the single-channel charge amplifier was fed to 
a 100MHz GW INSTEK GDS-1102A-U Digital 
Storage Oscilloscope.  

Fig. 1: Cussons Engine Test Bed P8252 with a 3.5 
kW (4.8 Hp) Lombardini Engine. 

Fig. 2: Testo 350 exhaust Gas Analyzer and Printer 
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TABLE 5: Specification of the Testo 350 emission gas 
analyzer 

*mv stands for measured value

III. RESULTS AND DISCUSSIONS
Results from the FTIR are discussed in this section 

along with engine performance parameters including 
brake thermal efficiency and brake specific fuel 
consumption and the emission analysis. 

1. FTIR Analysis
Fig. 3 illustrates the FTIR spectrum images for the 

four samples. The spectral peak around 2952 cm-1 
appears in all samples and indicates the presence of 
asymmetric stretch CH3 of a methyl group which can 
be found in diesel. A similar peak was reported by 
[Nespeca et al. 2018], [Barra et al. 2019], [Barra et 
al. 2020], [Li et al. 2020]. CH2 is the most available 
functional group in standard diesel fuel, hence the 
most pronounced in the FTIR. The spectral peaks 
around wave numbers 2920 cm-1 and 2850 cm-1 are 
the asymmetric and symmetric stretch for CH2 with 
a strong peak of its angular deformation appearing 
around 1457 cm-1. All the samples analysed to show 
the presence of these spectral peaks which are all 
found in standard diesel fuel oil. This agrees with the 

work of [Nespeca et al. 2018], [LAI, 2019]. A trace 
of the spectral peak was identified around 1600 cm-1 
which indicates aromatic stretch. All samples except 
D (standard diesel fuel oil) show the presence of this 
peak. This means that samples A, B, and C (non-
standard refined diesel fuel oil) have a traceable 
amount of aromatic compounds such as benzene, 
toluene, and xylene (BTEX) [Barra et al. 2020]. This 
was also reported in [Ale, 2003] where there were 
high concentrations of toluene, and m-, p-, and o-
xylenes, which was attributed to inadequate 
fractionation in the refining process. Various studies 
have reported the problems associated with the 
contamination of soil and water by BTEX [Ahmed et 
al. 2019], [Sun et al. 2021], [Kim et al. 2021], [Ashok 
et al. 2020]. BTEX contamination is serious because 
of its volatility, toxicity, solubility in water, and the 
ability to migrate [Ahmed et al. 2019]. BTEX 
contamination in soil has caused alarming issues in 
human health and ecosystems [Li et al. 2020]. 

2. Brake Thermal Efficiency (BTE)
The correlation between the output power 

derived to the heat imparted in the engine is called 
brake thermal efficiency [Ashok et al. 2020]. It is 
used to evaluate how well an engine converts the 
heat from fuel to mechanical energy [Rahman et al. 
2013]. The effect of the test samples A, B, C, and  

Measurement 

Parameter 

Range 

(ppm) 

Accuracy Resolution 

(ppm) 

CO, 

H2- Compensated 

0-10000 ±10ppm (0-199ppm) 

±5% of mv (200-

2000ppm) 

±10% of mv (rest of range) 

1 

COlow, 

H2-Compensated 

0-500 ±2ppm (0-39.9ppm CO) 

±5% of mv  

0.1 

NO 0-4000 ±5ppm (0-99) 

±5% of mv (100-

1999.9ppm) 

±10% of mv (2000-

4000ppm) 

1 

NOlow 0-300 ±2ppm (0-39.9ppm) 

±5% of mv (40-300ppm) 

0.1 

NO2 0-500 ±5ppm (0-99.9ppm) 

±5% of mv (100-500ppm) 

0.1ppm 

Fig. 3: Infrared spectra of all diesel samples 
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the control sample D on the brake thermal 
efficiency (BTE) at different load conditions is 
illustrated in Fig. 4. The brake thermal efficiency 
increased with the increase in load for all test 
samples. The BTE is superior at all loads for 
samples A and D. With increasing load there is a 
noticeable increase in the difference in the BTE 
between samples A, D, and B, C which could be 
attributed to higher fuel viscosity for samples B and 
C [Venu et al. 2020]. 

3. Brake specific fuel consumption (BSFC)
The brake specific fuel consumption is defined as 

the quantity of fuel consumed for a unit power output 
[Hariram et al. 2020]. It is an important parameter to 
analyse the performance of the diesel engine 
[Shrivastava and Verma, 2020]. Change of BSFC at 
different loads for the test fuels A, B, C, and D is 
illustrated in Fig. 5. For all test cases, the BSFC 
increased with increasing load [Shrivastava et al. 
2020], [Almohammadi et al. 2020]. The brake 
specific fuel consumption values for all test fuel 
samples is presented in Table 6. A slight difference 
could be observed between sample D and samples A, 
B, and C. 

 

TABLE 6: Brake specific fuel consumption for test fuels

4. Oxides of Nitrogen (NOx) Emission
Fig. 6 shows the variation in NOx emissions under 

different load conditions. As can be seen, the NOx 
emission increased with an increase in engine load 
for all the tested fuel samples. The non-standard 
refined diesel sample C had higher NOx compared 
to samples A, B, and the control sample D. Sample 
B had the lowest NOx value. The lower NOx 
formation indicated in sample B could be due to the 
lower temperature formed in the combustion 
chamber [Shrivastava et al. 2019]. Also, increased 
NOx in the test fuel samples could be attributed to 
aromatic content in the locally refined diesel fuel 
samples A, and C [Ale, 2003], [Sharma et al. 2020]. 
The NOx value for the test samples is presented in 
Table 7. Comparing the results of sample B to C, 

Engine Load 
(kW) 

Samples (kg/kW.hr)

A B C D
0.12 1.705 1.776 1.779 1.790 
0.43 0.613 0.619 0.653 0.640 
0.95 0.369 0.373 0.369 0.385 
1.71 0.281 0.291 0.292 0.303 
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there was a 34.26%, 53.21%, 68.29%, and 33.79% 
increase in NOx emissions at the different load 
conditions. Also comparing the non-standard refined 
diesel fuel sample C to the control sample D, results 
showed an increase of 10.96%, 26.27%, 29.93%, and 
27.64% in NOx emissions. The usage of non-
standard refined fuel could lead to an increase in 
oxides of nitrogen which poses a great danger to 
humans and the environment [Lopatin, 2020]. NOx 
emission from diesel engines causes harm to human 
health, pulmonary problems, chest tightness, and 
chronic cough [Lopatin, 2020]. The effect of NOx 
emissions on the environment also includes ozone 
depletion, haze, acid rain, and the production of 
greenhouse emissions [Mohammadi et al. 2020].    

TABLE 7: Oxides of nitrogen results for test fuels at varying 
loads 

5. Carbon Monoxide Emission
Fig. 7 shows the variation in carbon monoxide 

emission of the test fuels. A lack of oxygen during 
combustion could result in the formation of CO [Pan 
et al. 2019]. Samples A, C, and D had higher levels 

of CO emissions. Sample B on the other hand 
produced the highest CO emission at the highest load 
condition. The combustion temperature of an 
internal combustion engine could also affect the CO 
emission [Hazar et al. 2019]. In ICE, carbon 
monoxide emissions occur due to incomplete 
combustion [Yusri et al. 2019]. CO is a major 
environmental pollutant [Kalaimurugan et al. 2020]. 
It is one of the most significant pollutants and also 
the most harmful pollutant to human health [Liu et 
al. 2020]. It can be observed that carbon monoxide 
emissions decreased as the engine load increased in 
all the test samples. The CO emission value for test 
samples is presented in Table 8. There was an 
increase of 60.99%, 45.92%, 38.47%, and 41.59% 
between non-standard refined diesel fuel sample B 
and sample C.  Also, comparing the control sample 
D with the non-standard refined diesel sample C, 
there was a percentage increase in carbon monoxide 
(CO) emission of 44.91%, 23.22%, 25.29%, and 
29.08% at the four load conditions.       

TABLE 8: Carbon monoxide results for test fuels at varying 
loads 

Engine 
Load 
(kW) 

Samples (ppm) 

A B C D 

0.12 264.73 226.93 304.67 274.57 
0.43 352.37 286.87 439.50 348.07 
0.95 552.87 402.30 677.03 521.07 
1.71 791.53 696.80 932.27 730.37 

Engine 
Load 
(kW) 

Samples (ppm) 

A B C D 

0.12 368.67 303.33 488.33 337.00 
0.43 305.00 249.67 364.33 295.67 
0.95 210.67 183.67 254.33 259.67 
1.71 267.33 329.67 294.00 306.00 
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6. Carbon Dioxide Emission
Fig. 8 shows the variation in carbon dioxide 

emissions for the test fuel samples. This variation 
could be attributed to inconsistency in the refining 
process from the non-standard refineries A, B, & C. 
It can be seen from the figure that CO2 emission was 
highest for test sample C and lowest for sample B. 
With an increase in load, CO2 emission increased for 
all samples. The CO2 emission value for test samples 
is presented in Table 9. Increased CO2 emission 
aggravates the greenhouse effect, leading to global 
warming and human health risk [Harris et al. 2020]. 

TABLE 9: Carbon dioxide results for test fuels at varying 
loads 

7. Exhaust Gas Temperature
The variations in the exhaust gas temperature 

(EGT) at different loads are illustrated in Fig. 9. 
Generally, there was an increase in the exhaust gas 
temperature with load for all the tested fuels. This 
could be attributed to an increased supply of fuel into 
the combustion chamber as a result of the higher load 
[Shrivastava et al. 2019]. The exhaust gas 
temperature also indicates the quality of combustion 
in the combustion chamber [Kalaimurugan et al. 
2020]. The EGT for the test samples is presented in 
Table 10. It is dependent on the quantity of oxygen, 
the fuel-burning time, and pre-mixed fuel 
combustion time [Sharma et al. 2020]. 

TABLE 10: Exhaust gas temperature results for test fuels at 
varying loads 

8. Cylinder Pressure
The difference in cylinder pressure under different 
loading conditions for all test fuels is presented in 
Fig. 10. There is a noticeable increase in cylinder 

Engine 
Load 
 (kW) 

Samples (%) 

A B C D 

0.12 2.07 1.77 2.46 2.02 
0.43 2.52 2.12 3.25 2.46 
0.95 3.49 2.79 4.23 3.46 
1.71 4.77 4.61 5.74 4.64 

Engine 
Load 
(kW) 

Samples (°C ) 

A B C D 

0.12 139.67 130.33 143.33 146.00 
0.43 171.67 160.67 179.33 175.00 
0.95 223.67 209.67 229.67 225.67 
1.71 299.33 311.30 309.33 307.00 
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pressure as the engine load in increased for all test 
fuels. At 0.12kW and 0.43kW brake power, the 
cylinder pressure of the non-standard refined diesel 
fuel oils was slightly higher than that of the control 
sample D. At 0.95kW brake power, sample C was 
slightly higher than the control sample D. At 1.71kW 
brake power, sample C was 3.35% higher than the 
control sample D.  Comparing the cylinder pressure 
from the three different camps to that of the control 
sample as shown in Fig. 10 and Table 11, it was 
observed that at all load conditions the non-standard 
refined diesel fuel oil from camp C was higher than 
the control sample D. The higher pressure when 
using the non-standard refined diesel fuel oil may 
reflect shortened ignition delay time. According to 
[Ozer, 2020] the addition of solvents like toluene to 
diesel fuel oil results in shortened ignition delay; 
toluene reduces the flash, and ignition point of fuel. 
The addition of toluene is believed to start the 
burning in the first phase of the spray before the 
target point, possibly reducing the duration of the 
combustion [Simsek and Colak, 2019]. Due to its 
very low boiling point, toluene is easily gasified, and 
mixed with the charged air at the end of compression, 
could lead to a higher rate of combustion and higher 
cylinder pressure. The higher cylinder pressure could 
be damaging to internal engine parts like piston, 
piston rings and valves. 

TABLE 11: The percentage difference between the non-
standard refined diesel fuel oils and the control sample at 

1.71kW 

 

IV. THE EFFECT OF NON-STANDARD
REFINED DIESEL FUEL ON THE

ENVIRONMENT 
FTIR analysis of the tested fuel samples revealed 

the presence of aromatics in the non-standard refined 
diesel fuel oils compared to the control sample. 
VOCs which are characterized as unregulated 
emissions are much more dangerous to the 
environment and human health [Tian et al. 2018]. 
While VOCs can be from natural and anthropogenic 
origins, with natural sources mainly from vegetation 
emissions, volcanic eruptions, and forest fires the 
major anthropogenic sources comprise combustion 
and volatile emission [Niu et al. 2021]. 

In the controlled environment under which the 
experiment was conducted, there was a noticeable 
increase in harmful environmental pollutants from 
the usage of the non-standard refined diesel fuel oil. 
Results from the experimental analysis of the test 
fuels showed an increase in nitrogen oxide (NOx), 
carbon monoxide (CO), and carbon dioxide 
emissions for samples A and C compared to sample 
B and the control sample. The increase in the level 
of these gases released into the environment could 
affect inhabitants and the environment of the Niger 
Delta Region where these fuels are refined and sold 
to the public at cheap rates. Nitrogen oxide emission 
is a source of acid rain, photochemical smog, 
stratospheric ozone depletion, tropospheric ozone 
formation, and even climate change [Tian et al. 
2018], [Niu et al. 2021].  Also, an increase in carbon 
monoxide emission was observed from the results. 
CO is a component of motor vehicle exhaust and is 
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found to be a small contributor in photochemical 
reactions leading to ozone formation and could cause 
pathological and physiological changes and 
untimely death in humans [Amid et al. 2020]. 
Results also revealed an increased level of CO2 
emission while using the non-standard refined diesel 
fuel oil with notable increases in samples A and C as 
compared to sample B and the control samples. With 
the world moving in the direction of reducing GHG 
emissions, to protect the environment, the 
continuous use of non-standard refined diesel fuel oil 
might lead to increased GHG emissions [Amid et al. 
2020]. Finally, results also showed inconsistency in 
the non-standard refined products, which creates 
uncertainty when attempting to do corrective engine 
adjustments to burn these fuels. With this, the end-
users of the products may not be getting value for 
monies spent.   

V. CONCLUSION 
The present study experimentally investigated the 

effect of non-standard refined diesel fuel oil on the 
environment and combustion characteristics of the 
diesel engine. The BTE, BSFC, cylinder pressure, 
and emission characteristics were obtained from the 
engine performance analysis while the chemical 
bonds present in the test fuels were determined using 
the FTIR. The conclusions can be summarized as 
follows:  

1. The FTIR analysis indicated the presence of
asymmetric stretch CH3 of the methyl group
which can be found in diesel. The most
pronounced functional group was the 
asymmetric stretch of CH2 with wavenumber
2920 cm-1 and 2850 cm-1.

2. The FTIR analysis indicated the presence of
a spectral peak of aromatic stretch around 
1600 cm-1 for the nonstandard refined diesel
fuel samples. Trace number of aromatic
compounds such as benzene, toluene, and
xylenes.

3. Decreases were found in the BTE for samples
with higher fuel viscosity. There was no

major difference in the BSFC for the samples 
at all test loads 

4. NOx emissions increased as the load
increased for all the samples. The usage of
non-standard refined fuel could lead to an
increase in oxides of nitrogen which causes
grave danger to the environment and humans.

5. CO2 emissions increased as the engine load
increased. Despite the engine’s constant
speed at 2500 rpm, the CO2 emission for
sample C was higher and sample B lower
compared to samples A and D. The
variability in the CO2 emissions could be
attributed to the inconsistency in the refining
process. Increased CO2 emissions aggravate
the greenhouse effect.

6. The high cylinder pressure from sample C
could be damaging to piston rings, pistons,
and valves.
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